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Abstract

The following is the solution proposed by the team
UPFantastic for the Predicting Neurological Recovery
from Coma After Cardiac Arrest: The George B. Moody
PhysioNet Challenge 2023. The team was unable to be
scored on the test set for the official phase of the chal-
lenge. Nevertheless, in our view, the methods proposed
merit consideration, since the approach focused on inter-
pretable features and analysis of the relevance and distri-
bution of the data. We used synchrony and relative EEG
band power measurements, along with patient data to feed
a tree-based machine learning algorithm. We also used
Multiple Kernel Learning in a subset to analyze the ten-
dency of the patients during the monitoring in a dimen-
sional reduced space.

1. Introduction

The George B. Moody Physionet Challenge of this year
focused on predicting the outcome of patients that suf-
fered cardiac arrest. The outcomes were based on survival
chances, and they were labeled as good or poor. Addition-
ally, the challenge required to estimate the Cerebral Perfor-
mance Category (CPC). The official score would be calcu-
lated using the True Positive Rate (TPR) at a False Pos-
itive Rate (FPR) not higher than 0.05 [1]. The provided
dataset [2] had longitudinal data of electroencephalogra-
phy (EEG), electrocardiography (ECG) and other relevant
signals to analyze. The recordings were acquired during
72 hours after the patient suffered the cardiac arrest and
the final prediction was reported using the full record.

We applied phase-locking measures for the extraction
of the majority of features, which then served as inputs
for the machine learning algorithm. The degree of syn-
chrony has previously been shown to be useful in studying
the absence of consciousness, as it is associated with a de-
crease in connectivity in patients with poor outcome [3].
Continuous EEG monitoring post-cardiac arrest uncovers
distinct patterns, some of which mimic seizures. Such pat-
terns, when observed in epilepsy studies, are associated

with synchronous neuronal activity in the brain [4].
Due to the complexity of the signal, it is possible to miss

information when extracting features. Using dimensional-
ity reduction (DR) techniques to work with these complex
signals is recommended. Among the DR techniques, Mul-
tiple Kernel Learning (MKL) offers an interesting solution,
since it allows to work with multiview and non-linear data,
and it has been used in the biomedical signal analysis con-
text before [5].

In the current work, we propose a highly interpretable
solution for the classification of outcomes of cardiac arrest
patients using EEG signals. We focused on feature extrac-
tion, using MKL to analyze patterns in the patients.

2. Materials and methods

2.1. Preprocessing

Based on previous work by Alnes et al. [6], we band-
pass filtered the EEG signals within the α range (8-15
Hz). Furthermore, given the intriguing patterns observed
in the power spectrum within the β range (15-31 Hz) (see
Fig. 1), we also opted to bandpass filter to this frequency
range. The sampling frequency varied between 200 and
2500 Hz, depending on the recording. To reduce computa-
tional time, we downsampled the signals to achieve a new
sampling frequency Fs of around 70 Hz. This strategy ef-
fectively prevented aliasing within the β range. EEG sig-
nals were referenced against the mean of all electrodes.

2.2. Channel selection

The EEG data was obtained using scalp electrodes fol-
lowing the International 10-20 system. Previous work [6]
showed that the phase-locking between patients with good
and poor outcomes differed more in the electrodes located
in the frontal (Fp, F) and occipital (P, O) regions. Thus, we
analyzed the signals registered from the Fp1, Fp2, F3, Fz,
F4, P3, Pz, P4, O1, and O2 channels.
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2.3. Relative energy

We used the power spectral density to quantify the dis-
tribution of energy across α and β bands. The relative en-
ergy is a normalized measure to represent the contribution
of a specific frequency band’s energy with regard to the
total energy across all bands. This is important since we
compare the results across different patients. The relative
energy E for a given frequency band is computed as:

Eα =

∫ fb
fa

P (f) df∫ f1
f0

P (f) df
(1)

where f0 = 0.5 Hz and f1 = Fs/2 Hz, and fa = 8 and
fb = 15 referring to the range of the α band. The relative
energy Eβ in the β band is defined analogously for fa = 8
and fb = 15.

2.4. Mean phase coherence

We quantified the degree of phase locking between sig-
nal pairs x(tj) and y(tj) consisting of N samples each
taken at discrete times tj for j = 1, . . . , N using the
mean phase coherence R [7]. To do so, we first computed
the instantaneous phase using the Hilbert transform ϕx(tj)
and ϕy(tj) and determine their relative phase difference
φ(tj) = ϕx(tj)− ϕy(tj). To measure the mean phase co-
herence, we evaluated the consistency of phase differences
φ(tj) using the order parameter:

R =

∣∣∣∣∣∣ 1N
N−1∑
j=0

eiφ(tj)

∣∣∣∣∣∣ (2)

The measure attains values of R = 1 if and only the phase
difference φ(t) is equal during all time t, due to strong
phase-locking. In contrast, when both dynamics are inde-
pendent, R takes values close to zero.

2.5. Multivariate phase-locking

The mean phase coherence R only considers the phase-
locking between signal pairs. We can modify Eq. 2 for
obtaining the degree of phase-locking from L multivariate
instantaneous phases k = 1, . . . , L:

Z =
1

N

N−1∑
j=0

(
1

L

∣∣∣∣∣
L∑

k=1

eiφk(tj)

∣∣∣∣∣
)

(3)

If the dynamics underlying the measured time series
x1, . . . , xL are independent, Z takes values close to zero.
In contrast, we obtain Z = 1 if and only if all L phases are
equal at time t.
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Figure 1: Intermittent-like behavior was observed in
the relative energy within the β range for a good out-
come patient (a) Relative energy Eβ for exemplary good
outcome patient for all electrodes and the 5 min with best
signal to noise ratio of each hour after cardiac arrest. (b)
Same as (a) for a poor outcome patient, where the energy
pattern observed in (a) is not found.

2.6. Machine Learning

We split the dataset into training (70%) and validation
(30%), the latter in turn was split to obtain a test subset
(10% of the validation set). For both classification of the
patient outcome and CPC score estimation, we used en-
semble of bagged decision trees with 100 trees.

As input of the model, we used the patient features
that were available: age, sex, return of spontaneous cir-
culation (ROSC), out of hospital cardiac arrest (OHCA),
shockable rhythm (SR), targeted temperature management
(TTM) and features from the relative energy per channel,
the bivariate and multivariate phase-locking.

2.7. Feature analysis

We applied the signal analysis techniques to the signals
filtered in the α and β ranges. We computed quantitative
features, including the mean, maximum, and minimum
of the measures. Additionally, we focused on temporal
features to determine the specific time windows in which
these quantitative features manifest. This information is
relevant for predictions at 12, 24, 48 and 72 h. It is also
relevant to identify the channels where these quantitative
features occur most frequently. Therefore, we also derived
certain spatial features. For instance, the signal pairs where
the highest R value is more frequently obtained. Finally,
some pattern-based features were derived from visual in-
specting the measure results between patients with good
outcomes and those with poor outcomes.

2.8. Multiple Kernel Learning

To analyze the signals we also used the MKL approach.
This method calculates a different kernel for each feature
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Figure 2: Increased multivariate phase-locking ob-
served in seizure-like patterns. (a) Example 50-second
windows from a patient with a good outcome with no filter-
ing applied. (b) Same as (a) but applying a bandpass filter
in the α band. (c) Instantaneous multivariate phase-locking
Z(t) computed for the data shown in (b). A 1-second mov-
ing average filter was applied to smooth the data for visual
clarity.

and then computes a global affinity matrix that keeps simi-
lar inputs close in an output space [5]. We considered each
channel as an independent feature and we included the
original sampling frequency as the final input. Since this
method does not scale well with large datasets, we lowered
the computational cost by reducing the amount of data.
First, we only applied the method on the test subset. Sec-
ond, we applied the reduction techniques that we used for
the classification: channel reduction and downsampling.
Finally, inspired by the unofficial phase of the challenge,
we decided to calculate the signal to noise (SNR) ratio of
the signal in windows of 5 seconds. Then, we selected the
5 seconds window with the maximum quality of the record.

We performed the MKL training process, subsequently
analyzing the output space. The original space had 10 fea-
tures with 350 samples each and a single value for the
original sampling frequency; after performing the MKL,
the output space was reduced to 2 features, which allowed
us to create a scatter plot of the dataset. We analyzed the
different patient features and the outcomes in the output
space. We also followed the trajectory of some cases to
identify relevant biomarkers for the classifier.

3. Results

3.1. Feature exploration

Fig. 1 shows the relative energy Eβ derived from sig-
nals of a patient with a good outcome (Fig. 1a) and a poor

outcome (Fig. 1b). In the good outcome case, we observe
a sporadic pattern of Eβ peaks while in the poor outcome
case, a different pattern is observed. We use this behavior
to compute one of the features, which is the frequency of
the outlier peak Eβ occurrence. For Fig. 1a, we obtained
0.0667, and for Fig. 1b we get 0, which can be observed
from the temporal energy evolution.

A further example is presented in Fig. 2, showing a
seizure-like behavior recorded from a good outcome pa-
tient. This pattern is evident in both, in the broadband sig-
nal (Fig. 2a) and when filtered within the α range (Fig. 2b).
Computing the instantaneous multivariate phase-locking
Z(t) allowed us to characterize approximately these pat-
terns (Fig. 2c). Consequently, we used this high degree
of phase-locking as one of the features extracted from the
multivariate analysis.

3.2. Classification

The scores reported in this section were acquired from
the training set. The results during training were 100% for
classification accuracy and 0.983 MSE for the regression
model. The results for the validation subset were 75% of
accuracy for the classification model and 2.555 MSE for
the regression model. We used the specific scoring guide-
lines of the challenge in the test subset (see Table 1).
Table 1: Scores of the model using the challenge metrics
in a test subset of the training set.

Metric Score
Challenge Score 0.667
Outcome AUROC 0.812
Outcome AUPRC 0.894
Outcome Accuracy 0.650
Outcome F-measure 0.627
CPC MSE 1.251
CPC MAE 0.918

3.3. MKL

The scatter plot for the two first dimensions in the output
space colored with the CPC values is shown in Fig. 3a.
We colored the output space with the CPC values since it
is noticeable the transition between zones with different
outcomes. Since a patient has multiple records, we also
wanted to see how the position of the patient changed in
the output space through time, Fig. 3b shows the evolution
of the patient 0341 through time. This patient had a poor
outcome with a CPC score of 5. We show the same scatter
plot comparing the trajectory with age, in Fig. 3c, and sex,
in Fig. 3d. We did the same with other patients with other
outcomes, resulting in unidirectional trajectories for poor
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Figure 3: Results on MKL implementation. (a) Output
space of the test dataset colored with the CPC values. (b)
Left zoom of (a) (green box) in a specific zone of the output
space. In the trajectory analysis, the first records are in
the lower zone of the scatter plot, while the last records
are in the upper zone. Finally, the same trajectory in the
output space but colored with the ages (c) and sex (d) of
the patients.

outcomes, as described in Fig. 3, and trajectories with no
clear tendency for patients with an outcome with low CPC.
Also, older patients and female patients showed a higher
concentration on the final records of the poor outcomes
trajectories. However, other features did not show clear
trajectory patterns.

4. Discussion and conclusions

We present an interpretable approach for classifying
outcomes in cardiac arrest patients based on long-term
EEG recordings. Although the score achieved is promis-
ing, it cannot be taken as valid as it was not evaluated on
the hidden test set.

The features computed from the EEG analysis are con-
sistent with previous studies [3, 6], since we obtained a
higher degree of phase synchronization in patients with
good outcome.

The MKL showed 4 clear clusters, two in the middle
zone with high CPC scores, one with low CPC scores, and
the last one with a mix between both possible outcomes.
We used a patient of the latter to analyze the evolution of
the signals for a poor outcome. Age and sex show changes

on the trajectory, passing from a mainly young and male
zone with low density to a high-density zone with higher
ages and more females. We did not see this pattern in
the other patient features. On the one hand, the transition
may illustrates how the survivance chances of the patient
change over time, which would be interesting to study for
monitoring. On the other hand, the differences on the clini-
cal features distribution could be related to the relevance of
those features for the cluster formation in the output space,
being age and sex the most relevant features.

Computing time is a limitation for this approach since
both Z calculation and MKL training require high compu-
tational resources, which make them unfeasible for large
scale databases. It is important to keep working on opti-
mization methods for the implementation of both methods
to solve this problem.
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Álvaro José Bocanegra Pérez
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